Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(6): 2174-2183, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38066680

RESUMO

N6-methyladenosine (m6A), the most prevalent modification in eukaryotic messenger RNA (mRNA), plays a key role in various developmental processes in mammals. Three proteins that affect RNA m6A modification have been identified: methyltransferases, demethylases, and m6A-binding proteins, known as "writer," "eraser," and "reader" proteins, respectively. However, changes in the m6A modification when early porcine embryos are exposed to stress remain unclear. In this study, we exposed porcine oocytes to a high temperature (HT, 41°C) for 10 h, after which the mature oocytes were parthenogenetically activated and cultured for 7 days to the blastocyst stage. HT significantly decreased the rates of the first polar body extrusion and blastocyst formation. Further detection of m6A modification found that HT can lead to increased expression levels of "reader," YTHDF2, and "writer," METTL3, and decreased expression levels of "eraser," FTO, resulting in an increased level of m6A modification in the embryos. Additionally, heat shock protein 70 (HSP70) is upregulated under HT conditions. Our study demonstrated that HT exposure alters m6A modification levels, which further affects early porcine embryonic development.


Assuntos
Desenvolvimento Embrionário , Epigênese Genética , Animais , Suínos , Temperatura , Mamíferos
2.
FASEB J ; 37(12): e23274, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37917004

RESUMO

Glucose-regulated protein 78 (GRP78) binds to and stabilizes melanocortin 4 receptor (MC4R), which activates protein kinase A (PKA) by regulating G proteins. GRP78 is primarily used as a marker for endoplasmic reticulum stress; however, its other functions have not been well studied. Therefore, in this study, we aimed to investigate the function of GRP78 during porcine embryonic development. The developmental quality of porcine embryos, expression of cell cycle proteins, and function of mitochondria were evaluated by inhibiting the function of GRP78. Porcine oocytes were activated to undergo parthenogenesis, and blastocysts were obtained after 7 days of in vitro culture. GRP78 function was inhibited by adding 20 µM HA15 to the in vitro culture medium. The inhibition in GRP78 function led to a decrease in G proteins release, which subsequently downregulated the cyclic adenosine monophosphate (cAMP)/PKA pathway. Ultimately, inhibition of GRP78 function induced the inhibition of CDK1 and cyclin B expression and disruption of the cell cycle. In addition, inhibition of GRP78 function regulated DRP1 and SIRT1 expression, resulting in mitochondrial dysfunction. This study provides new insights into the role of GRP78 in porcine embryonic development, particularly its involvement in the regulation of the MC4R pathway and downstream cAMP/PKA signaling. The results suggest that the inhibition of GRP78 function in porcine embryos by HA15 treatment may have negative effects on embryo quality and development. This study also demonstrated that GRP78 plays a crucial role in the functioning of MC4R, which releases the G protein during porcine embryonic development.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Receptor Tipo 4 de Melanocortina , Feminino , Gravidez , Suínos , Animais , Desenvolvimento Embrionário , Partenogênese , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Proteínas de Ligação ao GTP
3.
Front Cell Dev Biol ; 11: 1238546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965572

RESUMO

Y-box binding protein 1 (YBX1) plays important roles in RNA stabilization, translation, transcriptional regulation, and mitophagy. However, its effects on porcine preimplantation embryos remain unclear. In this study, we knocked down YBX1 in the one-cell (1C) stage embryo via small interfering RNA microinjection to determine its function in porcine embryo development. The mRNA level of YBX1 was found to be highly expressed at the four-cell (4C) stage in porcine embryos compared with one-cell (1C) and two-cell (2C) stages. The number of blastocysts was reduced following YBX1 knockdown. Notably, YBX1 knockdown decreased the phosphatase and tensin homolog-induced kinase 1 (PINK1) and parkin RBR E3 ubiquitin protein ligase (PRKN) mRNA levels. YBX1 knockdown also decreased PINK1, active mitochondria, and sirtuin 1 levels, indicating reduced mitophagy and mitochondrial biogenesis. Furthermore, YBX1 knockdown increased the levels of glucose-regulated protein 78 (GRP78) and calnexin, leading to endoplasmic reticulum (ER) stress. Additionally, YBX1 knockdown increased autophagy and apoptosis. In conclusion, knockdown of YBX1 decreases mitochondrial function, while increasing ER stress and autophagy during embryonic development.

4.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569497

RESUMO

Zinc finger and SCAN domain-containing 4 (ZSCAN4), a DNA-binding protein, maintains telomere length and plays a key role in critical aspects of mouse embryonic stem cells, including maintaining genomic stability and defying cellular senescence. However, the effect of ZSCAN4 in porcine parthenogenetic embryos remains unclear. To investigate the function of ZSCAN4 and the underlying mechanism in porcine embryo development, ZSCAN4 was knocked down via dsRNA injection in the one-cell stage. ZSCAN4 was highly expressed in the four- and five- to eight-cell stages in porcine embryos. The percentage of four-cell stage embryos, five- to eight-cell stage embryos, and blastocysts was lower in the ZSCAN4 knockdown group than in the control group. Notably, depletion of ZSCAN4 induced the protein expression of DNMT1 and 5-Methylcytosine (5mC, a methylated form of the DNA base cytosine) in the four-cell stage. The H3K27ac level and ZGA genes expression decreased following ZSCAN4 knockdown. Furthermore, ZSCAN4 knockdown led to DNA damage and shortened telomere compared with the control. Additionally, DNMT1-dsRNA was injected to reduce DNA hypermethylation in ZSCAN4 knockdown embryos. DNMT1 knockdown rescued telomere shortening and developmental defects caused by ZSCAN4 knockdown. In conclusion, ZSCAN4 is involved in the regulation of transcriptional activity and is essential for maintaining telomere length by regulating DNMT1 expression in porcine ZGA.


Assuntos
Telômero , Fatores de Transcrição , Animais , Camundongos , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero , Proteínas de Ligação a DNA/metabolismo , Zigoto/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento
5.
Zool Res ; 44(5): 848-859, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37501400

RESUMO

Activating transcription factor 6 (ATF6), one of the three sensor proteins in the endoplasmic reticulum (ER), is an important regulator of ER stress-induced apoptosis. ATF6 resides in the ER and, upon activation, is translocated to the Golgi apparatus, where it is cleaved by site-1 protease (S1P) to generate an amino-terminal cytoplasmic fragment. Although recent studies have made progress in elucidating the regulatory mechanisms of ATF6, its function during early porcine embryonic development under high-temperature (HT) stress remains unclear. In this study, zygotes were divided into four groups: control, HT, HT+ATF6 knockdown, and HT+PF (S1P inhibitor). Results showed that HT exposure induced ER stress, which increased ATF6 protein expression and led to a decrease in the blastocyst rate. Next, ATF6 expression was knocked down in HT embryos under microinjection of ATF6 double-stranded RNA (dsRNA). Results revealed that ATF6 knockdown (ATF6-KD) attenuated the increased expression of CHOP, an ER stress marker, and Ca 2+ release induced by HT. In addition, ATF6-KD alleviated homeostasis dysregulation among organelles caused by HT-induced ER stress, and further reduced Golgi apparatus and mitochondrial dysfunction in HT embryos. AIFM2 is an important downstream effector of ATF6. Results showed that ATF6-KD reduced the occurrence of AIFM2-mediated embryonic apoptosis at HT. Taken together, our findings suggest that ATF6 is a crucial mediator of apoptosis during early porcine embryonic development, resulting from HT-induced ER stress and disruption of organelle homeostasis.


Assuntos
Fator 6 Ativador da Transcrição , Retículo Endoplasmático , Animais , Suínos , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Temperatura , Retículo Endoplasmático/metabolismo , Apoptose , Homeostase , Desenvolvimento Embrionário
6.
Front Cell Dev Biol ; 11: 1147095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123411

RESUMO

YME1L1, a mitochondrial metalloproteinase, is an Adenosine triphosphate (ATP)-dependent metalloproteinase and locates in the mitochondrial inner membrane. The protease domain of YME1L1 is oriented towards the mitochondrial intermembrane space, which modulates the mitochondrial GTPase optic atrophy type 1 (OPA1) processing. However, during embryonic development, there is no report yet about the role of YME1L1 on mitochondrial biogenesis and function in pigs. In the current study, the mRNA level of YME1L1 was knocked down by double strand RNA microinjection to the 1-cell stage embryos. The expression patterns of YME1L1 and its related proteins were performed by immunofluorescence and western blotting. To access the biological function of YME1L1, we first counted the preimplantation development rate, diameter, and total cell number of blastocyst on day-7. First, the localization of endogenous YME1L1 was found in the punctate structures of the mitochondria, and the expression level of YME1L1 is highly expressed from the 4-cell stage. Following significant knock-down of YME1L1, blastocyst rate and quality were decreased, and mitochondrial fragmentation was induced. YME1L1 knockdown induced excessive ROS production, lower mitochondrial membrane potential, and lower ATP levels. The OPA1 cleavage induced by YME1L1 knockdown was prevented by double knock-down of YME1L1 and OMA1. Moreover, cytochrome c, a pro-apoptotic signal, was released from the mitochondria after the knock-down of YME1L1. Taken together, these results indicate that YME1L1 is essential for regulating mitochondrial fission, function, and apoptosis during porcine embryo preimplantation development.

7.
Sci Rep ; 13(1): 8427, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225872

RESUMO

Heat stress (HS) is a long-standing hurdle that animals face in the living environment. Alpha-lipoic acid (ALA) is a strong antioxidant synthesized by plants and animals. The present study evaluated the mechanism of ALA action in HS-induced early porcine parthenotes development. Parthenogenetically activated porcine oocytes were divided into three groups: control, high temperature (HT) (42 °C for 10 h), and HT + ALA (with 10 µM ALA). The results show that HT treatment significantly reduced the blastocyst formation rate compared to the control. The addition of ALA partially restored the development and improved the quality of blastocysts. Moreover, supplementation with ALA not only induced lower levels of reactive oxygen species and higher glutathione levels but also markedly reduced the expression of glucose regulatory protein 78. The protein levels of heat shock factor 1 and heat shock protein 40 were higher in the HT + ALA group, which suggests activation of the heat shock response. The addition of ALA reduced the expression of caspase 3 and increased the expression of B-cell lymphoma-extra-large protein. Collectively, this study revealed that ALA supplementation ameliorated HS-induced apoptosis by suppressing oxidative and endoplasmic reticulum stresses via activating the heat shock response, which improved the quality of HS-exposed porcine parthenotes.


Assuntos
Transtornos de Estresse por Calor , Ácido Tióctico , Animais , Antioxidantes/farmacologia , Apoptose , Blastocisto , Resposta ao Choque Térmico , Suínos , Ácido Tióctico/farmacologia
8.
J Cell Physiol ; 238(7): 1592-1604, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37204013

RESUMO

Y-box binding protein 1 (YBX1) is a member of the family of DNA- and RNA-binding proteins that play crucial roles in multiple aspects, including RNA stabilization, translational repression, and transcriptional regulation; however, its roles in embryo development remain less known. In this study, to investigate the function of YBX1 and its mechanism of action in porcine embryo development, YBX1 was knocked down by microinjecting YBX1 siRNA at the one-cell stage. YBX1 is located in the cytoplasm during embryonic development. The mRNA level of YBX1 was increased from the four-cell stage to the blastocyst stage but was significantly decreased in YBX1 knockdown embryos compared with the control. Moreover, the percentage of blastocysts was decreased following YBX1 knockdown compared with the control. Defecting YBX1 expression increased maternal gene mRNA expression and decreased zygotic genome activation (ZGA) gene mRNA expression and histone modification owing to decreased levels of N6-methyladenosine (m6A) writer N6-adenosine-methyltransferase 70 kDa subunit (METTL3) and reader insulin-like growth factor 2 mRNA-binding protein (IGF2BP1). In addition, IGF2BP1 knockdown showed that YBX1 regulated the ZGA process through m6A modification. In conclusion, YBX1 is essential for early embryo development because it regulates the ZGA process.


Assuntos
Proteínas de Ligação a DNA , Desenvolvimento Embrionário , Zigoto , Animais , Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Zigoto/metabolismo , Proteínas de Ligação a DNA/metabolismo
9.
Cell Prolif ; 56(2): e13352, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36254813

RESUMO

BACKGROUND: Activating transcription factor 7 (ATF7) is a member of the ATF/cAMP response element (CRE) B superfamily. ATF2, ATF7, and CRE-BPa are present in vertebrates. Drosophila and fission yeast have only one homologue: dATF2 and Atf1, respectively. Under normal conditions, ATF7 promotes heterochromatin formation by recruiting histone H3K9 di- and tri-methyltransferases. Once the situation changes, all members are phosphorylated by the stress-activated kinase P38 in response to various stressors. However, the role of ATF7 in early porcine embryonic development remains unclear. RESULTS: In this study, we found that ATF7 gradually accumulated in the nucleus and then localized on the pericentric heterochromatin after the late 4-cell stage, while being co-localized with heterochromatin protein 1 (HP1). Knockdown of ATF7 resulted in decreases in the blastocyst rate and blastocyst cell number. ATF7 depletion resulted in downregulation of HP1 and histone 3 lysine 9 dimethylation (H3K9me2) expression. These effects were alleviated when P38 activity was inhibited. High temperatures increased the expression level of pP38, while reducing the quality of porcine embryos, and led to ATF7 phosphorylation. The expression level of H3K9me2 and HP1 was decreased and regulated by P38 activity. CONCLUSION: Stress-induced ATF7-dependent epigenetic changes play important roles in early porcine embryonic development.


Assuntos
Fatores Ativadores da Transcrição , Histonas , Animais , Suínos , Histonas/metabolismo , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Heterocromatina , Temperatura , Epigênese Genética , Proteínas Cromossômicas não Histona/metabolismo
10.
Theriogenology ; 196: 227-235, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427391

RESUMO

In mammals, E2 factor (E2F) acts as a cell cycle regulator. E2F transcription factor 4 (E2F4) is a member of the E2F family of transcription factors and usually represents predominant E2F activity in cells. The E2F4 gene has been extensively studied in animals and is associated with multiple functions, such as cell cycle regulation and apoptosis; however, little is known about its role during embryonic development. In this study, we investigated the function of E2F4 and its mechanism of action in porcine embryo development. For this purpose, we knocked down E2F4 by microinjecting double-stranded RNA of E2F4 at the 1-cell stage. The results showed that E2F4 knockdown in porcine embryos led to a significant decrease in the blastocyst rate and total cell number. Defective E2F4 expression reduced the level of G1/S checkpoints (cyclin E-cyclin-dependent kinase 2) and cell cycle-related gene expression at the 4-cell embryo stage and blastocyst. Moreover, a decrease in E2F4 expression increased phosphorylated H2A.X variant histones and activated ataxia telangiectasia mutated (ATM) and p53-p21 pathway. In addition, E2F4 depletion caused a significant decrease in histone acetylation. Taken together, E2F4 plays a critical role as a transcriptional activator in the development of porcine embryos, an observation that contradicts its well-established role as a transcription repressor.


Assuntos
Desenvolvimento Embrionário , Suínos , Animais , Ciclo Celular , Mamíferos
11.
Aging (Albany NY) ; 14(21): 8633-8644, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36375471

RESUMO

Increased levels of oxidative stress are major factors that drive the process of post-ovulatory oocyte aging. Epigallocatechin-3-gallate (EGCG), which accounts for up to 50% of the catechins, possesses versatile biological functions, including preventing or treating diabetes, cancer, and heart diseases. The aim of this study was to explore whether EGCG can delay porcine oocyte aging by preventing oxidative stress. Metaphase II (MII) oocytes were cultured for 48 h with different concentrations of EGCG (0-100 µM) in vitro as a post-ovulatory aging model. An optimal concentration of 5 µM EGCG maintained oocyte morphology and developmental competence during aging. The oocytes were randomly divided into five groups: fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG. The results suggest that EGCG significantly prevents aging-induced oxidative stress, glutathione (GSH) reduction, apoptosis, and autophagy. Moreover, mitochondria DNA copy number was decreased, and the number of active mitochondria and adenosine triphosphate (ATP) levels significantly increased by supplementation with EGCG. Thus, EGCG has a preventive role against aging in porcine post-ovulatory oocytes due to its ability to inhibit oxidative stress and promote mitochondrial biogenesis.


Assuntos
Catequina , Oócitos , Animais , Envelhecimento , Catequina/farmacologia , Glutationa , Estresse Oxidativo , Suínos
12.
PLoS One ; 17(11): e0277477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441709

RESUMO

Rotenone is a commonly used insecticidal chemical in agriculture and it is an inhibitor of mitochondrial complex Ⅰ. Previous studies have found that rotenone induces the production of reactive oxygen species (ROS) by inhibiting electron transport in the mitochondria of somatic and germ cells. However, there is little precise information on the effects of rotenone exposure in porcine oocytes during in vitro maturation, and the mechanisms underlying these effects have not been determined. The Cumulus-oocyte complexes were supplemented with different concentrations of rotenone to elucidate the effects of rotenone exposure on the meiotic maturation of porcine oocytes during in vitro maturation for about 48 hours. First, we found that the maturation rate and expansion of cumulus cells were significantly reduced in the 3 and 5 µM rotenone-treated groups. Subsequently, the concentration of rotenone was determined to be 3 µM. Also, immunofluorescence, western blotting, and image quantification analyses were performed to test the rotenone exposure on the meiotic maturation, total and mitochondrial ROS, mitochondrial function and biogenesis, mitophagy and apoptosis in porcine oocytes. Further experiments showed that rotenone treatment induced mitochondrial dysfunction and failure of mitochondrial biogenesis by repressing the level of SIRT1 during in vitro maturation of porcine oocytes. In addition, rotenone treatment reduced the ratio of active mitochondria to total mitochondria, increased ROS production, and decreased ATP production. The levels of LC3 and active-caspase 3 were significantly increased by rotenone treatment, indicating that mitochondrial dysfunction induced by rotenone increased mitophagy but eventually led to apoptosis. Collectively, these results suggest that rotenone interferes with porcine oocyte maturation by inhibiting mitochondrial function.


Assuntos
Oócitos , Rotenona , Suínos , Animais , Feminino , Rotenona/farmacologia , Espécies Reativas de Oxigênio , Células do Cúmulo , Mitocôndrias
13.
Front Cell Dev Biol ; 10: 826801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252192

RESUMO

Heat stress (HS) has been known to cause reproductive failure in animals, especially in summer. HS severely affects the developmental potential of oocytes and leads to low fertility rates. Previous studies have reported that HS compromises embryo development in bovine oocytes, and reduces ovarian development in mice, thereby impairing reproductive function in animals. However, the effect of high temperature (HT) on the organelles of porcine oocytes is unknown. In this study, we reported that exposure to HT for 24 h (41°C) significantly decreased meiotic maturation in porcine oocytes (p < 0.05). Further experiments on organelles found that HT induced mitochondrial dysfunction, increased abnormal mitochondrial distribution, and decreased mitochondrial membrane potential (MMP). We also found that HT induced abnormal endoplasmic reticulum (ER) distribution and higher expression of glucose regulatory protein 78 (GRP78), suggesting that HT exposure induces ER stress. Our results also indicated that exposure to HT induced abnormal distribution and dysfunction of the Golgi apparatus, which resulted from a decrease in the expression of the vesicle transporter, Ras-related protein Rab-11A (RAB11A). In addition, we found that HT exposure led to lysosomal damage by increasing the expression of lysosome-associated membrane protein 2 (LAMP2) and microtubule-associated protein 1A/1B-light chain 3 (LC3). In summary, our study revealed that HT exposure disrupts organelle dynamics, which further leads to the failure of meiotic maturation in porcine oocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...